AQA Maths M2

Topic Questions from Papers
 Energy, Work and Power

Answers

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 (a) \\
(b)(i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
P \& =(30 \times 42) \times 42 \\
\& =52920 \mathrm{~W}
\end{aligned}
\]
\[
F=1200 \times 9.8 \sin 5^{\circ}+30 v
\]
\[
\begin{aligned}
\& 52920=\left(1200 \times 9.8 \sin 5^{\circ}+30 v\right) v \\
\& v^{2}+392 \sin 5^{\circ} v-1764=0
\end{aligned}
\]
\[
\begin{aligned}
\& v=\frac{-392 \sin 5^{\circ} \pm \sqrt{\left(392 \sin 5^{\circ}\right)^{2}-4 \times 1 \times(-1764)}}{2 \times 1} \\
\& v=28.3 \text { or }-62.4 \\
\& \mathrm{v}=28.3 \mathrm{~ms}^{-1}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1A1 \\
dM1 \\
A1 \\
M1
\end{tabular} \& 2

4

4 \& | Finding force |
| :--- |
| Correct answer from $P=F v$ |
| Finding force. Correct force |
| Using $P=F v$ |
| Correct equation from correct working AG |
| Solving quadratic |
| Correct solution |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

(Q4, Jan 2006)

2 (a)	$\begin{aligned} & \frac{100}{0.4} e=10 \times 9.8 \\ & e=0.392 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Use of Hookes law and equilibrium Correct length
(b)	$\begin{aligned} & E P E=\frac{1}{2} \times \frac{100}{0.4} \times 0.6^{2}=45 \mathrm{~J} \\ & \mathrm{AG} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	Use of EPE formula Correct value from correct working
(c)(i)	$45=\frac{1}{2} \times \frac{100}{0.4}(x-0.4)^{2}+\frac{1}{2} \times 10 v^{2}+10 \times 9.8(1-x)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \end{aligned}$		Expression for EPE with $(x \pm 0.4)^{2}$ Correct EPE Four term energy equation
	$45=125(x-0.4)^{2}+5 v^{2}+98(1-x)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~A} 1 \end{aligned}$		Correct GPE Correct equation
	$5 v^{2}=98 x-98+45-125 x^{2}+100 x-20$	dM1		Solving for v^{2}
	$v^{2}=39.6 x-25 x^{2}-14.6 \mathrm{AG}$	A1	7	Correct result from correct working
(ii)	$39.6 x-25 x^{2}-14.6=0$			
	$25 x^{2}-39.6 x+14.6=0$			
	$x=\frac{39.6 \pm \sqrt{39.6^{2}-4 \times 25 \times 14.6}}{\text { 信 }}$	M1		Solving quadratic
	$x=\frac{2 \times 25}{}$			
	$=1$ or 0.584	A1		Correct solutions
	$x=0.584$	A1	3	Appropriate value selected SC Only correct answers given, award M1A1.
	Total		14	

3 (a)	$\mathrm{EPE}=\frac{1}{2} \times \frac{30}{0.5} \times 1.3^{2}=50.7 \mathrm{~J}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	2	use of EPE formula correct EPE
(b)(i)	$\begin{align*} & 50.7=\frac{1}{2} \times 2 v^{2}+\frac{1}{2} \times \frac{30}{0.5} \times 0.8^{2} \\ & 50.7=v^{2}+19.2 \tag{AG}\\ & v=\sqrt{31.5}=5.61 \mathrm{~ms}^{-1} \end{align*}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1 } \end{gathered}$	5	three term energy equation two terms correct all terms correct solving for v correct v from correct working
(ii)	$\begin{aligned} & 50.7=\frac{1}{2} \times 2 v^{2} \\ & v=\sqrt{50.7}=7.12 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	two term energy equation correct equation correct velocity
(c)	$\frac{1}{2} \times 2 v^{2}=50.7-1.8 \times 0.1 \times 2 \times 9.8$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		finding friction force correct friction force three term energy equation correct equation
	$v=\sqrt{47.172}=6.87 \mathrm{~ms}^{-1}$	A1	5	correct velocity
	Total		15	

(Q3, June 2006)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
4 (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \frac{1}{2} \times 35 \times v^{2}=35 \times 9.8 \times 10 \\
\& v=14\left(\mathrm{~ms}^{-1}\right)
\end{aligned}
\] \\
Air resistance or friction \\
Energy lost =
\[
35 \times 9.8 \times 10-\frac{1}{2} \times 35 \times 12^{2} \quad(=910)
\] \\
Work done: \(F \times 20 \quad(=910)\) \\
\(20 F=910\) \\
\(F=45.5(\mathrm{~N})\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1 \\
m1 \\
A1
\end{tabular} \& 3
1

4 \& | Energy method |
| :--- |
| Difference attempted \pm $F>0$ |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

(Q1, Jan 2007)

6 (a)	$\begin{aligned} \text { Kinetic energy } & =\frac{1}{2} \times 5 \times 10^{2} \\ & =250 \mathrm{~J} \end{aligned}$	M1 A1	2	Full method
(b)	Using conservation of energy: KE when box hits ground $=$ Initial $\mathrm{KE}+$ Change in potential energy $=250+5 \times 30 \times g$ $=1720 \mathrm{~J}$	M1 A1ft A1	3	Could have sign errors $\text { AG; SC2 } 5 \times 35.1 \times g=1720 . \ldots$
(c)	$\begin{aligned} & \frac{1}{2} m V^{2}=1720 \\ & V^{2}=688 \\ & \therefore \text { Speed is } 26.2 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	CAO; accept $\sqrt{688}$ or $4 \sqrt{43}$; SC2 26.3
(d)	No air resistance Box is a particle	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	2	Or no resistance forces Deduct 1 mark for unacceptable third reason
	Total		10	

(Q6, June 2007)

8 (a)	$\begin{aligned} \text { Kinetic energy } & =\frac{1}{2} \times 0.6 \times 15^{2} \\ & =67.5 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	
(b)	Using $m g h=\frac{1}{2} m v^{2}$:	M1		
	$\begin{aligned} 67.5 & =0.6 \times g \times h \\ \Rightarrow h & =\frac{67.5}{0.6 g} \\ & =11.5 \mathrm{~m} \end{aligned}$	A1 A1	3	
(c)	When 3 m above ground level: Change in PE is $0.6 \times g \times 3$ $=17.64 \mathrm{~J}$			
	$\begin{aligned} & \therefore \mathrm{KE} \text { of ball is } 67.5-17.64 \\ & =49.86 \mathrm{~J} \end{aligned}$	M1 A1		
	Speed of ball is $\sqrt{\frac{49.86}{\frac{1}{2} \times 0.6}}$	m1		Dep on M1
	$=12.9 \mathrm{~m} \mathrm{~s}^{-1}$	A1	4	No KE given: speed $=12.9$ SC3
(d)	eg ball is a particle, no air resistance, weight is the only force acting etc	E1	1	Accept no spin, no wind
	Total		10	

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
9 (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{EPE}=\frac{\lambda x^{2}}{2 l} \\
\& =\frac{300 \times(1.5)^{2}}{2 \times 4} \\
\& =84.375 \\
\& =84.4 \mathrm{~J}
\end{aligned}
\] \\
When string is slack, gain in PE is \(m g h\)
\[
\begin{aligned}
\& =6 \times g \times 1.5 \sin 30 \\
\& =44.1 \mathrm{~J} \\
\& \mathrm{KE}=\mathrm{EPE}-\text { gain in } \mathrm{PE} \\
\& =84.375-44.1 \\
\& =40.275 \\
\& \frac{1}{2} .6 . v^{2}=40.275 \\
\& v=3.66
\end{aligned}
\] \\
At \(A\), PE gained above initial position is
\[
\begin{aligned}
\& 6 \times g \times 5.5 \sin 30 \\
\& =161.7 \mathrm{~J}
\end{aligned}
\] \\
This is more than initial elastic potential energy \\
\(\therefore\) particle will not reach \(A\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
m1 \\
A1 \\
A1 \\
B1 \\
B1 \\
E1
\end{tabular} \& 2

5

3 \& | AG |
| :--- |
| Or PE above position string slack is 117.6 KE at A is -77.3 |
| Or |
| Using $v^{2}=u^{2}+2 a s$ |
| $a=0.5 g \quad$ B1 |
| $s=1.37$ or $1.366 \quad$ B 1 [or 2.87 above starting point] |
| Hence stops before A E1 |
| Vertical height above sling slack is 0.683 |
| Vertical height above starting point is |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

(Q6, Jan 2008)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
10 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Using power }=\text { force } \times \text { velocity } \\
\& \text { Power }=(40 \times 50) \times 50 \\
\& \therefore=100,000 \text { watts }
\end{aligned}
\] \\
When speed is 25 , max force exerted is \(\frac{100000}{25}\) \(=4000 \mathrm{~N}\) \\
\(\therefore\) Accelerating force is 3000 N \\
Using \(F=m a\)
\[
3000=1500 a
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1
\end{tabular} \& 2 \& \[
\begin{aligned}
\& \text { Need } 3 \text { terms eg } ‘ 4000 ’ \pm 1000=m a \\
\& \text { or } 2000 \pm 1000=m a \\
\& \text { M0 for } 1000=m a
\end{aligned}
\] \\
\hline (c) \& \begin{tabular}{l}
\[
a=2 \mathrm{~ms}^{-2}
\] \\
When van is at maximum speed force against gravity is \(m g \sin 6\) (parallel to slope) \\
Force against gravity and resistance is
\[
\begin{aligned}
\& m g \sin 6+40 v \\
\& \quad=1536.6+40 v
\end{aligned}
\] \\
Speed is maximum
\[
\text { when } 1536.6+40 v=\frac{100000}{v}
\]
\[
40 v^{2}+1536.6 v-100000=0
\] \\
Speed is \(34.4 \mathrm{~ms}^{-1}\)
\end{tabular} \& \begin{tabular}{l}
A1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 3

6 \& For 3 terms; $\frac{100000}{v}$ and 1 other term correct CAO

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

11 (a)

Work done $=\int_{0}^{e} \frac{\lambda x}{l} \mathrm{~d} x$
$=\left[\frac{\lambda x^{2}}{2 l}\right]_{0}^{e}$
$=\frac{\lambda e^{2}}{2 l}$
Or
Area under a straight line $=$
average force \times distance $=\frac{\lambda e^{2}}{2 l}$
(b)(i)

Using $T=\frac{\lambda x}{l}$

$$
5 g=\frac{150 \times x}{0.6}
$$

Extension is 0.196 m
(ii)
$\mathrm{EPE}=\frac{\lambda x^{2}}{2 l}$

$$
=\frac{150 \times(0.3)^{2}}{2 \times 0.6}
$$

$$
=11.25 \mathrm{~J}
$$

(iii) When x above P,
$\mathrm{EPE}=\frac{150 \times(0.3-x)^{2}}{2 \times 0.6}$
$\mathrm{PE}[$ relative to $P]=(-) 5 \times g \times x$
KE + EPE [at new point]
$=$ EPE [at $P]$ - gain in PE
$\frac{1}{2} m v^{2}+\frac{150 \times(0.3-x)^{2}}{2 \times 0.6}=$

$$
\frac{150 \times(0.3)^{2}}{2 \times 0.6}-5 g x
$$

$\frac{1}{2} m v^{2}+\frac{150 \times\left(x^{2}-0.6 x\right)}{2 \times 0.6}=-5 g x$
$\frac{1}{2} .5 \cdot v^{2}+125 x^{2}-75 x=-49 x$
$v^{2}=10.4 x-50 x^{2}$
(iv)

Particle is at rest when $v=0$
$10.4 x-50 x^{2}=0$
$x=0$ [not required]
Or $x=\frac{10.4}{50}=0.208 \mathrm{~m}$ above P.

Needs limit of 0

AG

2
A1

M1
A1
2
for $\frac{150 \times(\ldots-x)^{2}}{2 \times 0.6}$
for $5 \times g \times$ distance

4 terms, all signs correct, 2 terms correct

Equation involving terms in v^{2}, x^{2} and x only

12 (a)	$\begin{aligned} \text { Initial } \begin{aligned} \mathrm{KE} & =\frac{1}{2} m v^{2} \\ & =\frac{1}{2} \times 6 \times 12^{2} \\ & =432 \mathrm{~J} \end{aligned},=\text {. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Allow one of m and v incorrect
(b)(i)	When it hits the ground, conservation of energy gives $\begin{aligned} \mathrm{KE} & =\text { Initial } \mathrm{KE}+\text { loss in } \mathrm{PE} \\ & =432+6 \times g \times 4 \\ & =667.2 \\ & =667 \mathrm{~J}(3 \mathrm{sf}) \end{aligned}$	M1 A1	2	Need $6 \times g \times 4$ or 235.2 AG
(ii)	$667.2=\frac{1}{2} \times 6 \times v^{2}$ Speed is $14.9 \mathrm{~m} \mathrm{~s}^{-1}$	M1A1 A1	3	
(iii)	Stone is a particle No air resistance	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \hline \end{aligned}$	2	Not g constant No other forces acting
	Total		9	

(Q2, Jan 2009)

$13 \text { (a) }$ (b)	At maximum speed, tractive force $=$ resistance force Using power $=$ force \times velocity: $800000=F \times 40$ $\mathrm{F}=20000 \mathrm{~N}$ Using force \times distance $=$ work done $=$ change in energy: $20000 s=\frac{1}{2} \times 60000 \times\left(40^{2}-36^{2}\right)$ $\text { Distance }=456 \mathrm{~m}$	M1 M1 A1 M1 A1 A1 A1	3	M1 Fs = change of KE A1 2 of 3 terms correct A1 all 3 terms correct
	Total		7	

(Q9, Jan 2009)

15 (a)

(b) Change in PE as slides down:
$m g h=55 \times 9.8 \times 20 \cos 30$

$$
=9335.7 \ldots
$$

Using Conservation of Energy:
KE at end of slide $=247.5+9335.7$
Speed of Anne is $\sqrt{\frac{9580 \mathrm{~J}}{\frac{9583}{\frac{1}{2} \times 55}}}$

$$
=18.7 \mathrm{~m} \mathrm{~s}^{-1}
$$

(c)

Anne is a particle; no air resistance

	M1		
	A1	2	
	M1		Need $\cos 30$ or $\sin 30$
A1			
	m1		'a' +9335.7 accept 9583
	A1		
	m1		
	A1	6	
Total		9	

16	Force acting against gravity is $m g \sin \theta$ Force acting against gravity and resistance is $m g \sin \theta+200000$ $\begin{aligned} & =600000 g \sin \theta+200000 \\ & =347000 \end{aligned}$ $\begin{aligned} \text { Using power } & =\text { force } \times \text { velocity } \\ & =347000 \times 24 \\ & =8330 \mathrm{~kW} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { m1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1F } \\ \text { A1 } \end{gathered}$	6	Or 147000 $200000+{ }^{\prime} \mathrm{mg} \sin \theta^{\prime}$
	Total		6	

(Q5, June 2009)

17 (a)	$\begin{aligned} \text { EPE } & =\frac{\lambda x^{2}}{2 l} \\ & =\frac{180 \times 0.8^{2}}{2 \times 1.2} \\ & =48 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	
(b)	Using initial $\mathrm{EPE}=\mathrm{KE}$ when string becomes slack: $\begin{aligned} 48 & =\frac{1}{2} \times 5 \times v^{2} \\ v & =\sqrt{\frac{96}{5}} \\ & =4.38 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1F A1F	3	$\mathrm{ft} \sqrt{\frac{\mathrm{a}^{\prime}}{2.5}}$
(c)	Normal reaction is $5 g$ or 49 Frictional force is $5 g \times \mu$ Work done by frictional force is $5 \mu g \times 2$ $=10 \mu g$ Stops at wall $\Rightarrow 10 \mu g=48$ $\mu=0.490$	$\begin{gathered} \text { M1 } \\ \text { m1A1 } \\ \text { m1 } \\ \text { A1 } \\ \text { m1 } \\ \text { A1 } \end{gathered}$	7	$\begin{aligned} & \mathrm{m} 110 \mu g=' a ' \\ & \text { accept } \frac{24}{49} \text { OE } \end{aligned}$
	Total		12	

(Q6, June 2009)

18	Work done $=F s \cos \theta$ $=40 \times 5 \times \cos 30$ $=173 \mathrm{~J}$	M1		Accept Fs $\sin \theta$ for M1
		A1		
	Total		3	

(Q1, Jan 2010)

19 (a)	When $x \geq 22$, KE is $\frac{1}{2} \times 49 \times v^{2}$ EPE is $\frac{1078(x-22)^{2}}{2 \times 22}$ Change in PE is $49 \times g \times x$ Conservation of energy: $\begin{aligned} & \frac{1}{2} \times 49 \times v^{2}+\frac{1078(x-22)^{2}}{2 \times 22}=49 \times g \times x \\ & \frac{49}{2} v^{2}+\frac{49}{2}(x-22)^{2}=49 g x \\ & v^{2}+(x-22)^{2}=19.6 x \end{aligned}$	M1A1 $\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$		M1 for any $\frac{1078 p^{2}}{2 \times 22}$ M1 3 terms (KE, PE, EPE) A1 2 terms correct A1 all 3 terms correct $\mathrm{SC} 3 \frac{49}{2} v^{2}+\frac{49}{2} \mathrm{e}^{2}=49 g(\mathrm{e}+22)$ [could use x for e]
(b)	$5 v^{2}=318 x-5 x^{2}-2420$ If x is not greater than 22 , cord is not stretched	A1 B1	6 1	AG
(c)	At maximum value of $x, v=0$ $\begin{aligned} & \therefore 5 x^{2}-318 x+2420=0 \\ & x=\frac{318 \pm \sqrt{318^{2}-4 \times 5 \times 2420}}{2 \times 5} \\ & x=54.76 . . \text { or } 8.84 . . \\ &=54.8 \end{aligned}$	M1 m1 A1 E1	4	dep on M1 above A1 for either solution Needs to give a reason for deletion of second root. Both roots must be positive: one above 22 , one below 22
(d)(i)	When speed is a maximum, $a=0$ tension $=$ gravitational force	M1		$\begin{aligned} & \text { or } \\ & \frac{\mathrm{d}\left(5 v^{2}\right)}{\mathrm{d} x}=318-10 x \end{aligned}$
	$\begin{aligned} & \frac{1078(x-22)}{22}=49 g \\ & x-22=9.8 \\ & x=31.8 \end{aligned}$	A1 A1	3	$=0$ at maximum speed $\Rightarrow 318-10 x=0$ AG
(ii)	From part (a), $v^{2}=19.6 \times 31.8-9.8^{2}$ $v=22.96$ Maximum speed is $23.0 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	
	Total		16	

(Q8, Jan 2010)

(Q2, June 2010)

21 (a)	$\begin{aligned} & \text { Using power }=\text { force } \times \text { velocity } \\ & \begin{aligned} \text { Power } & =(30 \times 48) \times 48 \\ & =69120 \mathrm{watts} \end{aligned} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	AG
(b)	When speed is $40 \mathrm{~m} \mathrm{~s}^{-1}$, max force exerted is $\frac{69120}{40}$			
	$=1728 \mathrm{~N}$	B1		
	Accelerating force is ' 1728 ' -1200 N Using $F=m a$:	M1		
	$\begin{aligned} & 528=1200 a \\ & a=0.44 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \text { m1 } \\ & \text { A1 } \end{aligned}$	4	
(c)	Force exerted by engine is $\frac{69120}{v}$	B1		
	Force exerted by the engine $=30 v-m g \sin 3$	M1		(Use of $\cos 3$ delete $\mathrm{A} 1, \mathrm{~A} 1$ of 3 A terms)
	$30 v-615.47(\text { or } 1200 g \sin 3)=\frac{69120}{v}$	A1A1		A2 All terms correct A1 Two terms correct
	$30 v^{2}-615.47 v-69120=0$	A1		SC3 for $30 v^{2}+615.47 v-69120=0$
	$v=\frac{615.47 \pm \sqrt{615.47^{2}+4 \times 30 \times 69120}}{2 \times 30}$	M1		
	Speed is $59.3 \mathrm{~m} \mathrm{~s}^{-1}$	A1	7	
	Total		13	

(Q6, June 2010)

22 (a)	PE lost is $=4 \times g \times 5 \cos 70$ $=67.0 \mathrm{~J}$	M 1 A 1	2	$\mathrm{M} 14 \times g \times 5 \times \cos$ or $\sin 20$ or 70
(b)	KE is loss of $\mathrm{PE} \Rightarrow \mathrm{KE}$ is 67.0 J			
(c)	B 1	1	ft	
Using $\mathrm{KE}=\frac{1}{2} m v^{2}$				
$v^{2}=33.5$				
Speed of particle is $5.79 \mathrm{~m} \mathrm{~s}^{-1}$	M 1			
		A 1	2	(ft from (b))

(Q2, Jan 2011)

(Q3, Jan 2011)

$25 \text { (a) }$ (b)	$\begin{aligned} \mathrm{KE} & =\frac{1}{2} \times 58 \times 2^{2} \\ & =116 \mathrm{~J} \end{aligned}$ Change in PE: $m g h=58 \times 9.8 \times 7$ $=3978.8$ $\begin{aligned} \mathrm{KE} & =3978.8+116 \mathrm{~J} \\ & =4094.8 \mathrm{~J} \end{aligned}$ Speed of Kim is $\sqrt{\frac{4094.8}{\frac{1}{2} \times 58}}$ $\begin{aligned} & =11.88 \mathrm{~m} \mathrm{~s}^{-1} \\ & =11.9 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 M1 A1 M1 dM1 A1	2	M1: Correct fully substituted expression for KE. A1: CAO M1: Expression for PE with 58 and 9.8 or 9.81 with 6 or 7 for the height (or 11 and 4,11 and 5 or 10 and 4). A1: Accept 3980 or 3970 or 3978 or 3979 or 3978.8. Accept 3982 or 3983 or 3980. M1: Adding their two previous answers. dM 1 : Seeing expression for $v\left(\operatorname{not} v^{2}\right)$, dependent on second M1 A1: Accept 11.88 or 11.8 or 11.9 Accept 11.88 or 11.8 or 11.9 or AWRT 11.89 from $g=9.81$. Obtaining $v=\sqrt{u^{2}+2 g h}$ followed by incorrect substitution M0M1M1, unless h is 6 or 7, which is M1M1M1 11.0 (from $h=6$) M1M1M1 $\begin{array}{rlrl} v & =\sqrt{2^{2}+2 \times g \times 7} & \text { M1M1M1 } \\ & =\sqrt{141.2} & \mathrm{~A} 1 \\ & =11.9 & & \mathrm{~A} 1 \\ & & \\ & =\sqrt{4+14 g} & & \text { M1M1M1A1 } \\ & =11.9 & \text { A1 } \\ v & =\sqrt{2^{2}+12 g} & & \text { M1M1M1 } \end{array}$
	Total		7	

(Q1, June 2011)

$26 \text { (a) }$ (b)	$\begin{aligned} 90 \mathrm{~km} \mathrm{~h}^{-1} & =90 \times \frac{1000}{3600} \mathrm{~m} \mathrm{~s}^{-1} \\ & =25 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ $\begin{aligned} & \text { Resistance is } 5000 \mathrm{~N} \\ & \begin{aligned} \text { Using power } & =\text { force } \times \text { velocity } \\ & =5000 \times 25 \\ & =125 \mathrm{~kW} \end{aligned} \end{aligned}$	B1 B1 M1 A1	3	B1: Must see $\frac{1000}{3600}$ or $\frac{1000}{60^{2}}$. B1: Obtaining 5000 . M1: Using $P=F v$ with 25 and their F. A1: Correct final answer, must be in kW . 125 W or 125000 W B1M1 125 B1M1A1
	Total		4	

(Q9, June 2011)

(Q1, Jan 2012)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
29 \text { (a) }
\] \\
(b)
\end{tabular} \& \begin{tabular}{l}
using power \(=\) force \(\times\) velocity \\
power \(=(25 \times 42) \times 42\) \\
\(\therefore\) power is 44100 watts \\
when speed is \(15 \mathrm{~m} \mathrm{~s}^{-1}\), max force exerted is \(\frac{44100}{15}\)
\[
=2940 \mathrm{~N}
\] \\
resistance force is \(25 \times 15=375 \mathrm{~N}\) \\
accelerating force is \(2940-375 \mathrm{~N}\)
\[
=2565
\] \\
using \(F=m a\)
\[
2565=1500 a
\]
\[
a=1.71 \mathrm{~m} \mathrm{~s}^{-2}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
m1 \\
A1
\end{tabular} \& 2

4 \&

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

(Q4, Jan 2012)

30 (a)	$\begin{aligned} & \text { using } \mathrm{EPE}=\frac{\lambda x^{2}}{2 l} \\ & \mathrm{EPE}=\frac{32 \times 2.2^{2}}{2 \times 0.8} \\ & =96.8 \mathrm{~J} \end{aligned}$	M1 B1 A1	3	B1 for 2.2
(b)	by C of Energy, when next at rest, EPE (initial) = work done against friction + EPE (when at rest) 32×1.2^{2}	M1A1		M1A1 for work done by friction or $5 F$
	$96.8=F \times 5+\frac{3 \angle \times 1.2}{2 \times 0.8}$	M1A1		M1 3 terms; A1 all correct
	$5 F=96.8-28.8$ frictional force is 13.6 N	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$	6	B1 28.8
(c)	at B , tension is $\frac{32 \times 1.2}{0.8}$ $=48 \mathrm{~N}$ tension $>$ friction hence particle starts to move	B1 E1	2	
(d)	when particle is next at rest, work done against friction is EPE at B $13.6 \times$ distance $=28.8$ distance is 2.1176 $=2.12 \mathrm{~m}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	CAO
(e)	total distance is $5+2.1176$ $=7.12 \mathrm{~m}$	B1	1	ft from M1 in (d) or total distance $\times 13.6=$ original EPE, 96.8 total distance is 7.12 m
	Total		14	

(Q8, Jan 2012)

31 (a)	$\begin{aligned} \text { KE } & =\frac{1}{2} \times 76 \times 28^{2} \\ & =29792 \mathrm{~J} \\ & =29800 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	All terms correct
(b)	$\text { Change in PE: } \begin{aligned} m g h & =76 \times 9.8 \times 31 \mathrm{~J} \\ & =23088.8 \mathrm{~J} \\ & =23100 \mathrm{~J} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	All terms correct
(c)(i)	KE when touches down on ground $\begin{aligned} & =29792+23088.8 \mathrm{~J} \\ & =52881 \mathrm{~J} \\ & =52900 \mathrm{~J} \end{aligned}$	M1 A1	2	Their values, one correct CAO
(ii)	$\begin{aligned} & \text { Speed of Alan is } \sqrt{\frac{52881}{\frac{1}{2} \times 76}} \\ & =37.304 \mathrm{~m} \mathrm{~s}^{-1} \\ & =37.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1	2	CAO
	Total		8	

\begin{tabular}{|c|c|c|c|c|}
\hline 32 (a) \& \begin{tabular}{l}
\[
\begin{aligned}
\text { Initial EPE } \& =\frac{\lambda x^{2}}{2 l} \\
\& =\frac{120 \times(0.5)^{2}}{2 \times 5} \\
\& =3 \mathrm{~J}
\end{aligned}
\] \\
Initial KE is \(\frac{1}{2} \times 0.4 \times 9^{2}=16.2 \mathrm{~J}\) \\
When block is at \(A, \frac{1}{2} m v^{2}=3+16.2\)
\[
v^{2}=19.2 \div 0.2=96
\] \\
Speed is \(9.80 \mathrm{~m} \mathrm{~s}^{-1}\)
\end{tabular} \& M1
A1

M1

A1 \& 4 \& M1 for formula with extension 0.5
Accept $4 \sqrt{6}$; condone 9.79

\hline (b)(i) \& | Normal reaction is $m g=0.4 g$ Frictional force is $0.4 \mu \mathrm{~g} \mathrm{~N}$ |
| :--- |
| Work done by frictional force is $5.5 \times(0.4 \mu g)$ or $2.2 \mu g$ | \& | M1 |
| :--- |
| A1 |
| m1 | \& \&

\hline \& C of Energy, when at A, gives

$$
\begin{aligned}
& 19.2-5.5 \times(0.4 \mu g)=\frac{1}{2} \times 0.4 \times v^{2} \\
& 19.2-2.2 \mu g=0.2 v^{2} \\
& v=\sqrt{96-11 \mu g}
\end{aligned}
$$ \& M1

A1

A1 \& 6 \& | Three terms, eg initial energy in (a) ($=3$ or 19.2); work done; KE at A. |
| :--- |
| Fully correct |
| Ft $v=\sqrt{\left(v^{2} \text { in }(\mathrm{a})\right)-11 \mu g}$ |

\hline (ii) \& | Speed when rebounding is $\frac{1}{2} \sqrt{96-11 \mu g}$ |
| :--- |
| Block is stationary at B $\begin{aligned} & \frac{1}{2} \times 0.4 \times \frac{1}{4}(96-11 \mu g)-2.2 \mu g \\ & =\frac{120 \times(0.5)^{2}}{2 \times 5} \\ & \frac{1}{2} \times 0.1(96-11 \mu g)-2.2 \mu g=3 \\ & 4.8-2.75 \mu g=3 \\ & \mu=0.0668 \end{aligned}$ | \& | B1ft |
| :--- |
| M1 |
| A1 |
| A1 |
| A1 |
| A1 | \& 6 \& Three terms Two terms correct with sign Third term correct with sign Or $4.8-0.55 \mu g-2.2 \mu g=3$

\hline \& Total \& \& 16 \&

\hline
\end{tabular}

(Q8, June 2012)

33 (a)	$\begin{aligned} \mathrm{KE} & =\frac{1}{2} \times 0.16 \times 11^{2} \\ & =9.68 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	
(b)	$\text { Change in PE: } \begin{aligned} m g h & =0.16 \times 9.8 \times 5 \\ & =7.84 \mathrm{~J} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	
(c)(i)	KE when reached point B $\begin{aligned} & =9.68-7.84 \mathrm{~J} \\ & =1.84 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\begin{aligned} & \text { '(a)' }-{ }^{\prime}(\mathbf{b})^{\prime} \\ & \text { cao } \end{aligned}$
(ii)	Speed of ball is $\sqrt{\frac{1.84}{\frac{1}{2} \times 0.16}}$	M1		If added in (c)(i) 0 marks for (c)(i) 14.8 M1A1for $\mathbf{c}(\mathbf{i i})$
	$\begin{aligned} & =4.7958 \mathrm{~m} \mathrm{~s}^{-1} \\ & =4.80 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	A1	2	Condone 4.8,4.79
	Total		8	

(Q1, Jan 2013)

34	Force acting against gravity is $m g \sin \theta$ Force acting against gravity and resistance is $m g \sin \theta+8000$ $\begin{aligned} & =1500 \times g \times \sin \theta+8000 \\ & =8588 \mathrm{~N} \text { or } 8590 \mathrm{~N} \end{aligned}$ $\begin{aligned} \text { Using power } & =\text { force } \times \text { velocity } \\ & =8588 \times 22 \\ & =188936 \mathrm{~W} \\ & =189 \mathrm{~kW} \end{aligned}$	M1 A1 M1 dep A1 A1	5	Condone $\cos \theta$ or -1 for M marks Accept 188.9 or 188
	Total		5	

(Q3, Jan 2013)

\begin{tabular}{|c|c|c|c|c|}
\hline 35 (a) \& \[
\begin{aligned}
\text { Work done } \& =\int_{0}^{e} \frac{\lambda x}{l} \mathrm{~d} x \\
\& =\left[\frac{\lambda x^{2}}{2 l}\right]_{0}^{e} \\
\& =\frac{\lambda e^{2}}{2 l}
\end{aligned}
\] \& M1
A1
A1 \& 3 \& \(\mathrm{SC} 1 \int_{0}^{e} \frac{\lambda e}{l} d e\) SC1 \(\int \frac{\lambda x}{l} d x\) with no limits \\
\hline (b)(i) \& \begin{tabular}{l}
\(\operatorname{Using} T=\frac{\lambda x}{l}:\)
\[
\begin{aligned}
5 g \& =\frac{392 x}{1.6} \\
x \& =\frac{5 g \times 1.6}{392} \\
\& =0.2
\end{aligned}
\] \\
Extension is 0.2 m
\end{tabular} \& M1

A1 \& 2 \&

\hline (ii) \& When extension is

\[
$$
\begin{aligned}
0.6 \mathrm{~m}, & \text { EPE }=\frac{\lambda x^{2}}{2 l} \\
= & \frac{392 \times(0.6)^{2}}{2 \times 1.6} \\
= & 44.1 \mathrm{~J}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 | \& 3 \& B1 for 0.6

\hline (iii) \& | Let y metres be distance particle is above A. |
| :--- |
| C of energy, when particle has speed $0.8 \mathrm{~m} \mathrm{~s}^{-1}$, gives $\begin{aligned} & 5 \times g \times y+\frac{392 \times(0.6-y)^{2}}{2 \times 1.6}+\frac{1}{2} \times 5 \times 0.8^{2} \\ & =\frac{392 \times(0.6)^{2}}{2 \times 1.6} \end{aligned}$ | \& M1A1

A1F \& \& M1 4 terms, 2 correct M1A1 4 terms, 3 correct M1A2 4 terms correct Ft answer to (b)(ii)

\hline \& $$
\begin{aligned}
& 49 y+122.5(0.6-y)^{2}+1.6=122.5 \times 0.6^{2} \\
& 49 y-147 y+122.5 y^{2}+1.6=0 \\
& 122.5 y^{2}-98 y+1.6=0 \\
& y=\frac{98 \pm \sqrt{98^{2}-4 \times 122.5 \times 1.6}}{2 \times 122.5} \\
& y=\frac{98 \pm 93.9148}{245} \\
& \quad=0.016674 \text { and } 0.7833
\end{aligned}
$$ \& A1 \& \& if x used instead of $0.6-y$, A1 here for $x=0.5833 \ldots$

\hline \& \& E1 \& 5 \&

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

(Q2, June 2013)

37	$\begin{aligned} & \text { Using power }=\text { force } \times \text { velocity } \\ & 240000=F \times 20 \\ & F=12000 \\ & \text { Accelerating force is } 12000-5000 \\ & \text { Using } F=7000 \mathrm{~N} \\ & 22000 a=7000 \\ & a=0.318 \text { or } \frac{7}{22} \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	M1A1 A1 B1 M1 A1	6	
	Total			

